
Designing Parallel Operating Systems via Parallel
Programming ?

Eitan Frachtenberg, Kei Davis, Fabrizio Petrini, Juan Fernandez, and
José Carlos Sancho

Los Alamos National Laboratory, Los Alamos, NM 87545, USA
{eitanf,kei,fabrizio,juanf,jcsancho}@lanl.gov

Abstract. Ever-increasing demand for computing capability is driving the con-
struction of ever-larger computer clusters, soon to be reaching tens of thou-
sands of processors. Many functionalities of system software have failed to scale
accordingly—systems are becoming more complex, less reliable, and less effi-
cient. Our premise is that these deficiencies arise from a lack of global control
and coordination of the processing nodes. In practice, current parallel machines
are loosely-coupled systems that are used for solving inherently tightly-coupled
problems. This paper demonstrates that existing and future systems can be made
more scalable by using BSP-like parallel programming principles in the design
and implementation of the system software, and by taking full advantage of the
latest interconnection network hardware. Moreover, we show that this approach
can also yield great improvements in efficiency, reliability, and simplicity.

1 Introduction

There is a demonstrable need for a new approach to the design of system software for
large clusters. We claim that by using the principles of parallel programming and mak-
ing effective use of collective communication, great gains may be made in scalability,
efficiency, fault tolerance, and reduction in complexity.

Here system software refers to all software running on a machine other than user
applications. For a workstation or SMP this is just a traditional microprocessor operat-
ing system (OS) (e.g. Linux kernel) but for a large high-performance cluster there are
additional components. These include communication libraries (e.g. MPI, OpenMP),
parallel file systems, the system monitor/manager, job scheduler, high-performance ex-
ternal network, and more.

Experience with large-scale machines such as Cplant, Virginia Tech’s Terascale
Cluster, and ASCI’s Blue Mountain, White, Q, and Lightning, has shown that man-
aging such machines is time comsuming and expensive. The components of the system
software typically introduce redundancies in both functionality (communication and
coordination protocols) and in hardware (multiple interconnection networks) and are
typically ‘bolted together,’ each coming from a different developer or vendor, resulting

? This work is partially supported by the U.S. Department of Energy through Los Alamos
National Laboratory contract W-7405-ENG-36 and the Spanish MCYT under grant
TIC2003-08154-C06-03.



in a multiplication of complexity. Further, for the larger systems efficiency (delivery of
theoretical capability), responsiveness, and reliability remain low, indicating that they
have already outgrown current incoherent suites of system software.

We believe that the root of the problem is the use of largely independent, loosely-
coupled compute nodes for the solution of problems that are inherently tightly coupled.
A solution to this problem is to better integrate the compute nodes using modern inter-
connection network hardware. We propose a new methodology for the design of parallel
system software based on two cornerstones: 1) BSP-like global control and coordination
of all of the activities in the machine, and so, 2) treating the system software suite just
like any other parallel application. In practice we are able to attain efficient and highly
scalable coordination using a very small set of collective communication primitives.
From a theoretical point of view this set of primitives should be amenable to formal
semantic characterization and analysis (possibly following Lamport [12]), but this re-
mains a potential direction for future research. More practically, this demonstrates new
modalities for the use of collective communication.

Much of what we propose here has been implemented and shown to have achieved
the desired goals—simplicity, efficiency, effectiveness, and very high scalability. Other
components, based on the same primitives, are still in development. However, various
subsets of these mechanisms are independent and so may be put into use in the absence
of the others, so allowing incremental proof of concept.

2 Toward a Parallel Operating System

Distributed and parallel applications (including operating systems) are distinguished
by their use of interprocessor communication. Distributed applications typically make
much more use of local information and exchange a relatively small number of point-
to-point messages. Parallel programs benefit from, and often require, mechanisms for
global synchronization and exchange of information, such as barriers, reduction opera-
tions, etc. Many OS tasks are inherently collective operations, such as context switching
and job launching; others benefit by being cast in terms of collective operations.

RESOURCE
MANAGEMENT

PARALLEL
FILE SYSTEM

RUN-TIME
MONITORING

USER
APPLICATION

USER
APPLICATION

PARALLEL
FILE SYSTEM

RUN-TIME
MONITORING

RESOURCE
MANAGEMENT

COMMUNICATION
PROTOCOL 1 PROTOCOL 2

COMMUNICATION COMMUNICATION
PROTOCOL 3

COMMUNICATION
PROTOCOL 4

GLOBAL COMMUNICATION AND CONTROL

INTERCONNECTION NETWORK

COLLECTIVE COMMUNICATION PRIMITIVES
INTERCONNECTION NETWORK

Fig. 1. Communication Protocol

Our vision is that of a cohesive global operating system that is designed using paral-
lel programming paradigms and techniques. Such a unified OS will not only be smaller
and simpler than the sum of the parts currently used for system software, but also more
efficient because of reduced overhead and redundancy (Fig. 1). All the roles of a clus-
ter OS, such as job launching and scheduling, user-level communication, parallel I/O,



transparent fault tolerance, and garbage collection can be implemented over a single
communication infrastructure. This layer in turn is designed as a parallel program us-
ing the same collective communication primitives.

By using a carefully chosen set of low-latency, scalable communication primitives
we can impose a global communication model where both system and user commu-
nication is tightly controlled at a fine granularity. The system as a whole behaves as
a bulk-synchronous program, where computation and communication are divided into
distinct, timed phases. In this model, called Buffered Coscheduling (BCS) [3], all the
user and system-level communication is buffered and controlled. The entire cluster
marches to the beat of a global strobe that is issued every few hundreds of microsec-
onds. This is somewhat reminiscent of the SIMD model, except the granularity is in
terms of time rather than instructions. In the periods between strobes, or timeslices,
newly-issued communication calls are buffered until the next timeslice. At every strobe,
nodes exchange information on pending communication, so that every node has com-
plete knowledge of the required incoming and outgoing communication for the next
timeslice. The nodes then proceed to globally schedule those communications that will
actually be carried out during the timeslice, and proceed to execute them. The advan-
tage of this model is that all the communication is controlled and can be maintained in
a known state at every given timeslice, so that problems arising from congestion, out of
order arrival, and hot spots can be avoided. As reported in Section 4, these constraints
impose little or no overhead for scientific applications, while obtaining the advantages
of a more deterministic, controllable machine.

3 Core Primitives and Operating System Functions

Suggested Primitives Our suggested support layer consists of three network prim-
itives. These may be implemented in hardware, software, or a combination of both;
commodity hardware exists today that can implement them directly. While this set of
primitives is complete (in terms of providing the needed functionality), other primitives
might conceivably provide equivalent (or even more) functionality and efficiency.

XFER-AND-SIGNAL Transfer (PUT) a block of data from local memory to a com-
monly registered memory area, or global memory, of a set of nodes, and optionally
signal a local and/or a remote event upon completion.

TEST-EVENT Check if a local event has been signaled. Optionally, block until it has.
COMPARE-AND-WRITE Arithmetically compare a global variable on a set of nodes

to a local value. If the condition is true on all nodes, then (optionally) assign a new
value to a (possibly different) global variable.

Note that XFER-AND-SIGNAL and COMPARE-AND-WRITE are both atomic opera-
tions. That is, XFER-AND-SIGNAL either PUTs data to all nodes in the destination
set or (in case of a network error) none of the nodes. The same condition holds for
COMPARE-AND-WRITE when it writes a value to a global variable. Furthermore, if
multiple nodes simultaneously initiate COMPARE-AND-WRITEs with identical param-
eters except for the value to write, then, when all the operations have completed, all
nodes will see the same value in the global variable. In other words, both primitives



are sequentially consistent operations [12]. TEST-EVENT and COMPARE-AND-WRITE

are traditional blocking operations, while XFER-AND-SIGNAL is non-blocking. The
only way to check for completion is to TEST-EVENT on a local event triggered by
XFER-AND-SIGNAL. These semantics do not dictate whether the mechanisms are im-
plemented by the host CPU or by a network co-processor, or where the global memory
resides. Nor do they require that TEST-EVENT yield the CPU, though it may be advan-
tageous to do so.

System Software Requirements and Solutions In this section we discuss how the
various responsibilities of a global OS can be realized with the aforementioned mech-
anisms and communication layer. These OS functions are all discussed and expressed
in terms of the proposed abstract layer, showing its sufficiency and completeness for a
global OS. Table 1 summarizes these arguments.

Table 1. Network mechanisms usage

Characteristic Function Solution

Job Launching Data dissemination XFER-AND-SIGNAL

Flow control COMPARE-AND-WRITE

Termination detection COMPARE-AND-WRITE

Job Scheduling Heartbeat XFER-AND-SIGNAL

Context switch responsiveness Prioritized messages
Communication PUT XFER-AND-SIGNAL

GET XFER-AND-SIGNAL

Barrier COMPARE-AND-WRITE

Broadcast COMPARE-AND-WRITE +
XFER-AND-SIGNAL

Storage Metadata/file data transfer XFER-AND-SIGNAL

Debugging Debug data transfer XFER-AND-SIGNAL

Debug synchronization COMPARE-AND-WRITE

Fault Tolerance Fault detection COMPARE-AND-WRITE

Checkpointing synchronization COMPARE-AND-WRITE

Checkpointing data transfer XFER-AND-SIGNAL

Garbage Collection Live state synchronization Determinism and COMPARE-AND-WRITE

Job Launching The traditional approach to job launching, including the distribution
of executable and data files to cluster nodes, is a simple extension of single-node job
launching: data is transmitted using the network file system, and jobs are launched with
scripts or simple utilities such as rsh or mpirun. These methods do not scale to large
machines where the load on the network file system, and the time it would take to
serially launch a binary on many nodes, make them inefficient and impractical. Several
solutions have been proposed for this problem, all based on software tricks to reduce the
distribution time. For example, Cplant and BProc use their own tree-based algorithms
to distribute data with latencies that are logarithmic in the number of nodes [1,9]. While



more portable than relying on hardware support, these solutions are significantly slower
and not always simple to implement [7].

Decomposing job launching into simpler sub-tasks shows that it only requires mod-
est effort to make the process efficient and scalable:

– Executable and data distribution are no more than a multicast of packets from a file
server to a set of nodes, and can be implemented using XFER-AND-SIGNAL.

– Launching of a job can be achieved simply and efficiently by multicasting a control
message to the target nodes using XFER-AND-SIGNAL. The system software on
each node then forks the process and waits for its termination.

– The reporting of job termination can incur much overhead if each node sends a
single message for every process that terminates. This can be avoided by all pro-
cesses of a job reaching a common synchronization point upon termination (using
COMPARE-AND-WRITE) before delivering a single message to the resource man-
ager.

Job Scheduling. Interactive responsiveness from a scheduler is required to make a large
machine as usable as a workstation. This implies that the system must be able to per-
form preemptive context switching with latencies similar to uniprocessor systems, that
is, on the order of a few milliseconds. Such latencies are almost impossible to achieve
without scalable collective operations: the time required to coordinate a context switch
over thousands of nodes can be prohibitively large when using point-to-point commu-
nication [10]. Even though the system is able to efficiently context switch between
different jobs, concurrent (uncoordinated) application traffic and synchronization mes-
sages in the network can unacceptably delay response to the latter. If this occurs even
on a single node for even just a few milliseconds it may have a severe detrimental effect
on the responsiveness of the entire system [15].

Many contemporary networks offer some capabilities to the software scheduler to
prevent these delays. The ability to maintain multiple communication contexts alive in
the network securely and reliably, without kernel intervention, is already implemented
in some state-of-the-art networks such as QsNet. Job context switching can be easily
achieved by simply multicasting a control message to all the nodes in the network using
XFER-AND-SIGNAL. Our communication layer can guarantee that system messages
get priority over user communication to avoid synchronization problems.

Communication. Most of MPI’s, TCP/IP’s, and other communication protocols’ ser-
vices can be reduced to a rather basic set of communication primitives, e.g. point-to-
point synchronous and asynchronous messages, multicasts, and reductions. If the under-
lying primitives and protocols are implemented efficiently, scalably, and reliably by the
hardware and cluster OS, respectively, the higher level protocols can inherit the same
properties. In many cases, this reduction is very simple and can eliminate the need for
many of the implementation quirks of protocols that need to run on disparate network
hardware. Issues such as flow control, congestion avoidance, quality of service, and pri-
oritization of messages are handled transparently by a single communication layer for
all the user and system needs.



Determinism and fault tolerance. When the system globally coordinates all the appli-
cation processes, parallel jobs can be made to evolve in a controlled manner. Global
coordination can be easily implemented with XFER-AND-SIGNAL, and can be used to
perform global scheduling of all the system resources. Determinism can be enforced by
taking the same scheduling decisions between different executions. At the same time,
global coordination of all the system activities helps to identify the states along the
program execution at which it is safe to checkpoint.

The tight control of global communication and the induced determinism that fol-
lows from this constraint allows for a seamless inclusion of various other important OS
services and functionalities. One example is parallel I/O, which can benefit from the
hot-spot and congestion avoidance of this model, since all the I/O operations can be
scheduled as low-priority communications. The ability to synchronize an entire appli-
cation to a known state at fine granularity (without having messages en route) is very
important for performing global garbage collection, by keeping track of the live state
of global objects [11]. Even more important is the ability to use these known states
for automatic, fine-grained, coordinated checkpointing. Because of the frequency with
which components can fail, one of the main challenges in using large-scale clusters is
achieving fault tolerance. The difficulty of checkpointing for these clusters arises from
the quantity of unknown system state at any given point in time, due largely to non-
determinism in the communication layer. Eliminating and controlling most of these
unknowns allows significant simplification of automatic checkpointing and restart at a
granularity of a few seconds, far more responsively than current solutions. The check-
pointing traffic is handled and scheduled by the communication layer together with all
other traffic, again mitigating flow-control and non-determinism issues.

Implementation and Portability The three primitives presented above assume that the
network hardware enables efficient implementation of a commonly registered memory
area. Such functionality is provided by several state-of-the-art networks such as QsNet
and Infiniband and has been extensively studied [13,14]. We note that some or all of
the primitives have have already been implemented in several other interconnects; their
expected performance is shown in Table 2. They were originally designed to improve
the communication performance of user applications; to the best of our knowledge their
usage as an infrastructure for system software has not been explored before this work.

Hardware support for multicast messages sent with XFER-AND-SIGNAL is needed
to guarantee scalability for large-scale systems—software approaches do not scale well
to thousands of nodes. In our case, QsNet provides PUT/GET operations, making the
implementation of XFER-AND-SIGNAL straightforward.

COMPARE-AND-WRITE assumes that the network is able to return a single value to
the calling process regardless of the number of queried nodes. Again, QsNet provides a
global query operation that allows direct implementation of COMPARE-AND-WRITE.

4 Results

We have implemented a research prototype, called STORM [7], as a proof of con-
cept of our approach. STORM is a full-fledged resource manager that provides job



Table 2. Measured/expected performance of the core mechanisms for n nodes

Network Comparison (µs) Multicast (MB/s)

Gigabit Ethernet [17] 46 log n Not available
Myrinet [2] 20 log n ∼ 15n

Infiniband [13] 20 log n Not available
QsNet ([14]) < 10 > 150n

BlueGene/L [8] < 2 700n

launching, resource allocation and monitoring, load balancing, and various job schedul-
ing algorithms including space-shared, time-shared, and backfilling variants. STORM’s
performance has been evaluated, modeled, and compared to several others from the
literature [7]. STORM is an order of magnitude faster than the best reported results
for job launching, and delivers two orders of magnitude better performance for context
switching. STORM was later used to implement several new scheduling algorithms. In
a comprehensive experimental evaluation [5,6], our new algorithms improved the sys-
tem’s utilization and response times both for simple and dynamic workloads. By using
our primitives for global resource coordination, the algorithms were better suited to
avoiding and mitigating problems of internal and external fragmentation.

We have also implemented BCS-MPI, an MPI library based on the BCS model, on
top of STORM. The novelty of BCS-MPI is its use of global coordination of a large
number of communicating processes rather than an emphasis on the traditional opti-
mization of the point-to-point performance. Several experimental results [4], using a set
of real-world scientific applications, show that BCS-MPI is only marginally slower (less
than 10%) than production-grade MPI implementations, but is much simpler to imple-
ment, debug, and reason about. Performance results for scientific applications provide
strong evidence for the feasibility of our approach for transparent fault tolerance [16].

5 Conclusions

We have shown that a BSP-like approach to the design of system software is not only
feasible but promises much-needed improvements in efficiency, simplicity, and scala-
bility for all of the key functionalities of a cluster OS. Further, it provides a framework
in which effective fault tolerance may be achieved. All of the functions may be imple-
mented in terms of simple collective communication primitives directly supported by
currently available interconnection networks.

Concretely, the resource manager STORM implements job launching, resource al-
location and monitoring, job scheduling, and load balancing. BCS-MPI implements a
high-level communication protocol. The full implementation of the fault tolerance and
parallel I/O mechanisms is underway; experimental results provide ample evidence that
the desired functionalities and behaviors are achievable.



References

1. R. Brightwell and L. A. Fisk. Scalable Parallel Application Launch on Cplant. In Proceed-
ings of IEEE/ACM Supercomputing 2001 (SC’01), Denver, CO, November 2001.

2. D. Buntinas, D. Panda, J. Duato, and P. Sadayappan. Broadcast/Multicast over Myrinet using
NIC-Assisted Multidestination Messages. In Workshop on Communication, Architecture,
and Applications for Network-Based Parallel Computing (CANPC ’00), Toulouse, France,
January 2000.

3. Fabrizio Petrini and Wu-chun Feng. Buffered Coscheduling: A New Methodology for Mul-
titasking Parallel Jobs on Distributed Systems. In Proceedings of the International Parallel
and Distributed Processing Symposium 2000, volume 16, Cancun, MX, May 2000.

4. J. Fernandez, F. Petrini, and E. Frachtenberg. BCS MPI: A New Approach in the System
Software Design for Large-Scale Parallel Computers. In Proceedings of IEEE/ACM Super-
computing 2003 (SC’03), Phoenix, AZ, November 2003.

5. E. Frachtenberg, D. Feitelson, F. Petrini, and J. Fernandez. Flexible CoScheduling: Mitigat-
ing Load Imbalance and Improving Utilization of Heterogeneous Resources. In Proceedings
of the International Parallel and Distributed Processing Symposium 2003 (IPDPS03), Nice,
France, April 2003.

6. E. Frachtenberg, D. G. Feitelson, J. Fernandez, and F. Petrini. Parallel Job Scheduling under
Dynamic Workloads. In D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, editors, Job
Scheduling Strategies for Parallel Processing, volume 2862 of Lect. OPTnotes Comput. Sci.
Springer Verlag, 2003.

7. E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin, and S. Coll. STORM: Lightning-Fast
Resource Management. In Proceedings of IEEE/ACM Supercomputing 2002 (SC’02), Balti-
more, MD, November 2002.

8. M. Gupta. Challenges in Developing Scalable Scalable Software for BlueGene/L. In Scaling
to New Heights Workshop, Pittsburgh, PA, May 2002.

9. E. Hendriks. BProc: The Beowulf Distributed Process Space. In Proceedings of the 16th

Annual ACM International Conference on Supercomputing, New York, NY, June 2002.
10. A. Hori, H. Tezuka, and Y. Ishikawa. Overhead Analysis of Preemptive Gang Scheduling. In

D. G. Feitelson and L. Rudolph, editors, Job Scheduling Strategies for Parallel Processing.
Springer Verlag, 1998.

11. T. Kamada, S. Matsuoka, and A. Yonezawa. Efficient Parallel Global Garbage Collection
on Massively Parallel Computers. In G. M. Johnson, editor, Proceedings of IEEE/ACM
Supercomputing 1994 (SC’94), 1994.

12. L. Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess
Programs. IEEE Transactions on Computers, C-28(9), September 1979.

13. J. Liu, A. Mamidala, and D. K. Panda. Fast and Scalable MPI-Level Broadcast using In-
finiband’s Hardware Multicast Support. In Proceedings of the 18th International Parallel &
Distributed Processing Symposium, Santa Fe, New Mexico, April 2004.

14. F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The Quadrics Network: High-
Performance Clustering Technology. IEEE Micro, 22(1), January/February 2002.

15. F. Petrini, D. Kerbyson, and S. Pakin. The Case of the Missing Supercomputer Performance:
Achieving Optimal Performance on the 8,192 Processors of ASCI Q. In Proceedings of
IEEE/ACM Supercomputing 2003 (SC’03), Phoenix, AZ, November 2003.

16. J. C. Sancho, F. Petrini, G. Johnson, J. Fernández, and E. Frachtenberg. On the Feasibility
of Incremental Checkpointing for Scientific Computing. In Proceedings of the 18th Interna-
tional Parallel & Distributed Processing Symposium, Santa Fe, New Mexico, April 2004.

17. P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy OS-bypass NIC-driven Gigabit Ether-
net Message Passing. In Proceedings of IEEE/ACM Supercomputing 2001 (SC’01), Denver,
CO, November 2001.


